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Abstract. The aim of this paper is to enumerate and classify all the periodic orbits of the 
(~ /3 ) - rhombus  billiard. The billiard Row for this system resides on a classically invariant 
surface of genus two. After transforming the rhombus billiard trajectories on an exactly 
equivalent set of trajectories on a barrier billiard (with barrier-to-gap ratio equal to 2), we 
present a criterion facilitating the complete enumeration of periodic billiard trajectories. 
Having enumerated the trajectories, we classify them distinctly and provide the underlying 
number-theoretic rationale for the same. Our analysis involves a 'polar construction' which 
facilitates the determination of lengths of periodic orbits and the areas of the bands in 

implying that all the periodic orbits close after an even number of reflections from the 
boundaries. These results are used to study the family-counting function F ( x )  (i.e. the 
number of families of periodic orbits of length less than x) as a function of x. 
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1. Introduction 

Dynamical systems show a wide range of behaviour, from regular (corresponding to 
exact integrability) to chaotic (pertaining to non-integrability). It is now well understood 
that integrability of a dynamical system is an exception rather than a rule, and that 
the generic dynamical system is non-integrable. An immense amount of work has been 
done towards the improvement of our understanding of classical dynamics of non- 
integrable systems in the past few decades. The quantum mechanics of these systems, 
however, is far from clear [I] .  It has not been possible to extend semiclassical 
quantization schemes (e.g. the Einstein-Brillouin-Keller method) which might enable 
us to sight the first-hand finger-prints of classical chaos in what can he called 'semi- 
classical chaos'. Alternatively, one can solve the Schrodinger equation with appropriate 
boundary conditions and study the spectral statistics and the nature of the eigenfunc- 
tions, and hence find quantum signatures of classically chaotic features [2,3]. A 
disadvantage of this procedure is that it does not aiiow an easy quantum-ciassicai 
correspondence unless the Schrodinger equation is solved exactly-a rare occurrence. 
The most general semiclassical quantization method known today embodies the peri- 
odic orbit theory, developed in the late sixties and early seventies by Gutzwiller [4] 
and Balian and Bloch [ 5 ] .  In a series of papers, a relation between the solutions of 
the time-independent Schrodinger equation and the classical periodic orbits was 
derived. Taking the trace of the Green function over the coordinate space, it was shown 
that the singularities of the resulting response function give the energy eigenvalues. 
Moreover, the response function could be written as a sum over all the periodic orbits 
where each term in the sum contained a phase factor completely determined by the 
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action integral and the Morse index of the orbits, and an amplitude factor determined 
by the period and the stability exponent of the periodic orbit. The efficacy of this 
theory has been demonstrated by, for instance, (a) quantization of anisotropic Kepler 
problem [6] and (b) quantization of the hydrogen atom in a strong magnetic field [7]. 
Both are examples of completely chaotic systems. It must be pointed out that the 
enumeration of all the periodic orbits and subsequent determination of action integrals, 
Morse indices, periods and the stability exponents is an exceedingly difficult task. 

In this paper, we deal with a simple pseudointegrable system, the (~ /3) - rhombus  
billiard. This dynamical system comprises a particle moving inside a (~ /3) - rhombus-  
shaped box (figure 1) and reflecting from the boundaries in accordance with Snell's 
law (the angle of incidence equals the angle of reflection). The fact that the system is 
classically pseudointegrable arises from the existence of two integrals of motion in 
involution with each other except at the vertices [8]. The set of the trajectories which 
encounter the vertices has been shown to be of Lebesgue measure zero [9]. Thus the 
pseudointegrability can be thought of as a step away from integrability, and the question 
of how this feature manifests itself in the quantal solutions, i.e. the eigenlevel sequences 
and the eigenfunctions, was posed and answered recently [3]. In summary, the following 
was shown by solving the Schrodinger equation numerically: 
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Figure 1. The (w/3)-rhombus-shaped enclosure in 
which the particle moves, specularly reflecting from 
the walls without change in its kinetic energy. 

Figure 2. On reflecting the rhombus about a ( 2 ~ 1 3 ) -  
vertex, the vertices I ,  2 , 3 , 4  are seen changing in such 
a way that on third reflection, we see that 2 and 4 
are interchanged. 

(i) The nearest-neighbour level spacing statistics agree with the Berry-Robnik 
distribution [ I l l ,  having one limit as Poisson distribution (corresponding to integrable 
systems) and the other as the Wigner surmise (corresponding to chaotic systems). The 
spectral rigidity also shows an intermediate behaviour in accordance with the classically 
pseudointegrable behaviour. 

(ii) The eigenfunctions non-vanishing on both the diagonals, called pure rhombus 
modes, show highly irregular behaviour and a Gaussian amplitude distribution, despite 
the fact that the system has a zero Kolmogorov entropy. 

In a beautiful article, the problem of determining the energy spectrum of the 
(~ /3) - rhombus  billiard was tackled by reducing the Schrodinger problem to a set of 
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functional equations satisfied by some entire functions of a single complex variable 
having a given asymptotic behaviour [io]. Proceeding in this manner, Gaudin could 
obtain the first few levels for the (?r/3)-rhombus billiard. 

The analysis of the periodic orbits presented here is also of great interest to 
mathematicians. In mathematical parlance [9], the (w/3)-rhombus billiard is called 
almost-integrable, the reasons being the rational ratios of the sides (in this case, trivially, 
unity) and the internal angles being integral multiples of m/3. The invariant surface 
in the phase space is a sphere with two handles, i.e. genus, g = 2 .  It may be recalled 
that the invariant surfaces for integrable systems are tori, with g = 1. The subtle 
difference this makes is that the trajectory in the phase space goes around one of the 
handles and comes to a point where it has an option of going to any one of the two 
handles. Mathematically, this idea leads to a shuffling transformation or the interval 
exchange mapping which is known to be ergodic, even ‘weakly mixing’. The possibility 
of determining the lengths of all the periodic billiard orbits, their Morse indices (related 
to the number of bounces the orbit suffers before closing) and stability exponents, 
leads one to successfully employ the periodic orbit theory and obtain the density of 
states. 

In this paper, however, we shall discuss only the classical orbits of the (7r/3)- 
rhombus billiard. Recent results show that the non-periodic orbits of this system are 
fractals [ 181. Thus, this system possesses bands of periodic orbits in the neighbourhood 
of which are uncountable fractal trajectories. Gutzwiller periodic orbit theory is 
developed for the systems where the periodic orbits are unstable and isolated. In the 
absence of a periodic-orbit sum formula for the orbit-scenario for this system, we leave 
the semiclassical quantization to a subsequent publication [19], the work being in 
progress. 

In this study, the (.ir/3)-rhombus billiard becomes the first non-integrable billiard 
system for which all the periodic orbits are enumerated, classified and characterized. 

We end this introduction by quoting Joseph Ford [U]: ‘. . . plane billiards exhibit 
almost all possible behaviour including chaos, “rational billiards” offer an analytical 
route to chaos paved with null complexity.. . ‘. 

2. Periodic billiard orbits 

In the following, we enumerate and classify all the periodic orbits occurring in the 
(?r/3)-rhombus billiard. Finally, we summarize our results in tabular form. 

2.1. Enumeration 

To begin with, let us briefly discuss how the motion of a particle inside a (?r/3)-rhombus- 
shaped enclosure can be visualized as motion on an equivalent barrier billiard, a 
construction due to Eckhardt et al [13]. It is simple to see that after three successive 
reflections of the rhombus around a vertex of angle 2 ~ 1 3 ,  the rhombus returns upon 
itself but with reversed orientation (figure 2). In other words, we obtain the final 
configuration of vertices as if we have reflected the rhombus about the shorter diagonal 
of the rhombus joining the vertices 1 and 3. Of course, if we continue the reflections, 
it will take exactly three more (or equivalently, another reflection about the shorter 
diagonal) for the rhombus to identify itself with the original orientation. In this picture, 
due to double-valuedness of the configuration of vertices per direction (by direction, 
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we mean one of the three directions the rhombus is facing in figure 2), one can visualize 
three rhombus-orientations in figure 2 on one sheet (or plane) and the subsequent 
three orientations (required to obtain the original configuration of vertices in rhombus 
A) on another sheet (or plane). One can visualize a trajectory of particle reflecting 
from a wall of the rhombus by letting the particle move straight and appropriately 
reflecting the rhombus about the wall. It is this way of analysing that turns out to be 
more fruitful and hence the discussion on the tessellation of the plane by rhombi. Due 
to its equivalence to the Riemann surface of z"~, z being a complex variable, we notice 
that the two sheets discussed above are joined along straight lines (the complex 
counterparts are branch cuts) that cannot be crossed; we call these the barriers. Since 
going to the next plane is to compensate for a phase rr, the trajectory must reflect from 
the barrier. 

Alternatively, after three reflections, we can reflect the third rhombus back onto 
itself (hence compensating for the phase in the first step), i.e. the fourth rhombus 
comes to lie under the third rhombus. If we continue reflecting now, the sixth rhombus 
will come to lie under the first rhombus. In this picture, the point 1 in figure 3 will 
become a (monkey) saddlepoint. 
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Figure 3. Appearance of a saddlepaint at the vertex 
1 in the monkey saddle--a point of negative cur- 
vature that repels the particle, hence the cuts in 
figure 4. 

Figure 4. Tessellation of the plane by stacking the 
fundamental regions (consisting of double 
hexagons) exploiting the translational symmetry. 
Barriers are depicted by the bold lines. The point 0 
represents the origin. Owing to the symmetry of the 
barriers, the integer labelling can be done, e.g. the 
point P represents a point that can be labelled as 
( q . p ) = ( 2 , I ) .  

Continuing the process of reflection, we get two planes connected by cuts between 
the saddlepoints. This construction, projected onto two dimensions, entails an orbit 
looking like a zig-zag line. We can now construct the fundamental region using six 
replicas of the rhombus, and subsequently tessellate the two-dimensional plane by 
stacking the fundamental regions side-by-side, exploiting the translational symmetry. 
On doing so, we will generate a barrier billiard shown in figure 4 with two sets of 
planes (call them top and bottom, for instance) interspersed with each other. 

Now we concentrate our attention on the barrier billiard where the barrier-to-gap 
ratio is two. The barrier is comprised of contributions from two rhombi and hence 
there are two distinguishable sub-barriers giving rise to a single barrier of length twice 
that of the gap. For a barrier billiard with barrier-to-gap ratio equal to unity, Hannay 
and McCraw [14] have discussed the classification of periodic orbits. As noted by 
these authors, their analysis proceeds due to the unit barrier-to-gap ratio, and the 
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generalizations seem difficult to come by. We now take up  our barrier billiard and 
carry out the analysis leading to the periodic orbits. It must be observed that the barrier 
billiard corresponding to the rhombus problem is more general than the Hannay- 
McCraw barrier billiard in two significant ways: 

(i) The barrier-to-gap ratio is two, as mentioned above 
(ii) the barriers appear in an oblique manner; precisely at an angle of ?r/3. 
First, we observe that bifurcations of the orbits take place at the two ends of the 

barrier and at the centre of the barrier. This is due to the fact that each half of the 
barrier is contributed from two different rhombi in the fundamental region, and the 
point of bifurcation actually corresponds to a vertex. 

The single connected surface is made up of two planes-a top and a bottom. Under 
the covering of the surface by fundamental regions (double hexagons), the surface 
thus divides into alternate arrays of both planes containing barriers. Obviously, it does 

choose an origin which, for obvious reasons dictated by symmetry of the barriers, is 
chosen to be the centre of the barrier, denoted by 0 in figure 4. Calling the length of 
a side of the rhombus by L, the barrier length is 2L and the gap length is L. On the 
vertical axis, the perpendicular distance between adjacent arrays of a (top/bottom) 
plane is 3"'L. Since the factor of 3"' is common in the vertical axis, we choose to 
measure the length in this direction in terms of 3'/*, thereby making the ordered pairs, 
labelling the points, purely consisting of integers, (4, p ) .  For instance, a point P will 
be labelled by ( 2 , l )  (figure 4). 

A typical trajectory on this surface will be made u p  of alternate motions in the top 
and the bottom planes. Since every plane consists of an identical array of barriers, the 
trajectory starting at an angle with the plane from an initial point and ending on an 
equivalent point on the same plane constitutes a periodic orbit (see, for example, figure 
5). Instead of following the zig-zag path, we can unfold the trajectory into an exactly 
equivalent straightened version. Subsequently, we must decide which directions lead 
to periodic orbits. 

not !XB!!CT Re!? FhiCh p ! m  is c.!!ed tep (or boaom). This 2rgment .!!nws us to 

Figure 5. Equivalent 10 a periodic orbit in the rhom- 
bus BADCB, we see here a periodic ofbit in the 
barrier billiard B'ADC'B'. It may be noted that the 
orbit in the barrier billiard closes at an equivalent 
point on the other plane. 

By virtue of the integer labelling, it is clear that all those directions that end on an 
(integer, integer) ordered pair correspond to periodic orbits. Leaving apart a factor of 
3"2 in the vertical direction, these directions correspond to rational gradients on each 
(bottom or top) plane. Also, starting from the origin, we must consider only those 
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endpoints such that q and p are coprime to avoid overcounting. By the symmetry of 
the barriers on the plane, we must restrict ourselves to the upper-half region only. 
Further, taking care of the geometry of our system, we must apply the restriction that 
either p S q or q S 3 p  (q ,  p = 0). Obviously then three classes emerge, namely (9, p )  
can be ( i )  (odd, odd), or (ii) (odd, even), or (i i i)  (even, odd). Next, we have to classify 
the number of bands or families of periodic orbits that correspond to each direction. 
Before undertaking this we need to convince ourselves that there can be no more 
periodic orbits then those obtained in the manner described above. 

For equal barrier-to-gap ratio, it was shown that any trajectory with an irrational 
gradient can be approximated arbitrarily well by trajectories with rational gradients, 
utilizing Klein’s string construction or the continued fraction expansion. However, 
those trajectories never close in both position and momentum; rather they form a 
curious zig-zag. This zig-zag path, for quadratic irrational gradients, has a fractal 
dimension. For the barrier billiard in our case, the same holds [ 181. Hence, we conclude 
that the trajectories with any irrational gradient do not close. 

It, therefore, follows that if we take into account all the rational gradients, avoid 
overcounting and classify different families/bands, we will have enumerated all the 
periodic orbits. 

For further analysis we resort to an alternative construction for reasons of clarity 
and easy generalization, and name it the polar construction. 

2.1.1. Polar construction. Exploiting the periodicity ofthe barrier-gap-barrier-gap-. . . 
string, we wrap the basic string on two circles representing two different planes. Each 
circle has three basic divisions, coming out of two barriers (from two rhombi, joined 
together) and a gap. Each division now corresponds to an angle of 2?r/3. The skew 
manner in which the barriers on both planes are stacked is accounted for here by 
giving an appropriate phase difference between equivalent points on two circles (see, 
e.g. figure 6). A ( q , p )  direction can be represented on these circles by the following 
procedure. 

Divide each segment of the inner circle (only for the sake of clarity, it may as well 
be the outer one) into p parts after fixing the origin at the point joining the two 
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Figure 6. Polar construction for the odd-odd CE 
case. The typical case for which the diagram is drawn 

Figure 7. Polar construction far the odd-odd CC 
case. The typical case for which the diagram is drawn 

is ( q . ~ ) = ( l , 3 ) .  is ( q . p ) = ( 3 , 5 ) .  
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sub-bamer segments. The origin of the outer circle will be at an angle of nq/3p  from 
the origin of the inner circle (moving along the circular arc in a definite sense, taken 
anticlockwise here). After fixing the origin, the outer circle has to be divided into 3p 
parts of equal length with one division at the origin. Since there are two gradients, 
positive and negative, we adopt the convention of marking outside (inside) the circle 
as a representative of positive (negative) gradient. 

To follow a trajectory, we start with an arbitrary point on one of the p subsegments 
of the barrier segment to the right of the origin, on the inner circle. The next point 
will be on the outer circle at the same distance (=number of subsegments) from the 
origin of the outer circle as the previous point was from its respective origin. As is 
clear from earlier discussion, these points must alter between the outer and the inner 
circles. The following point comes on the inner circle but q subsegments away from 
the original one, and the next on the outer circle q subsegments away from the previous 
one, and so on. Going on in this way, after a finite number of points, we will reach 
the starting point on the inner circle and that would make one periodic orbit. Although 
this is generally valid, in some cases it may not lead to the minimal length of the orbit. 
Such would be the case when, after exactly half the number of reflections, the trajectory 
closes, i.e. reaches a point corresponding to the same respective subsegment as it started 
with, on the outer circle. At first sight, it might seem erroneous to consider this as a 
periodic orbit. However, to resolve this point, the following may be recalled: the 
procedure of erecting barriers and subsequent polar construction leads to an easy 
classification of orbits; however, a more fundamental idea is the straightening of a 
trajectory, reflecting the domain about the edge on which the particle is incident. For 
the cases where the length of an orbit turns out to be double by the polar construction, 
one can easily see that, using the 'domain-reflection method', one gets the correct 
length. Thus, without ambiguity, the trajectory in the polar construction must be 
considered periodic even if it seems to be closing on the other plane (see, for example, 
the illustration in figure 5 ) .  With this clarification, we need only think in terms of the 
polar construction. Different sequences of barriers and gaps correspond to different 
orbits. It is quite clear that all the orbits occur in bands. 

2.2. Classification 

As we have seen above, the most elementary classification is in (4, p )  being (odd, odd), 
(odd, even) and (even, odd). Having set the origin at the centre of the barrier, the 
trajectory sets off in some rational direction and reaches either the centre or an end 
(left or right) of a barrier. It is rather obvious to see that for each of the three cases 
above, there are subclasses which we shall call the centre-to-centre (cc) case and the 
centre-to-edge (CE) case. Our procedure of classification uses the following steps: 

(i) using the polar construction, we depict the trajectory on the circles with an 
opening and an ending point on one of the subsegments of a segment. We go on to 
other subsegments of the same segment, exploring the positive and the negative 
gradients until both sides of the circles are filled. In all, we must fill 12p points; 

(ii) check ifthe orbit has already closed half-way on the outer circle, or equivalently, 
on the other plane. 

With these steps in mind, we now take up each class separately and classify the 
bands of periodic orbits in full. 

Case I: odd-odd CE. We first describe, through a simple example, how we can arrive 
at general conclusions. Our approach is to make a conclusion based on empirical data 
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obtained by ‘brute force’. Finally we will provide a rationale supporting and explaining 
the conclusion obtained. 

Let us consider the case of (q ,  p )  = (1,3). The corresponding polar construction is 
shown in figure 6. As can be seen, point 1 and point 10 identify with each other, 
forming a periodic orbit after six bounces. Also, there is an orbit with negative gradient. 
It should be noted that all the subsegments are visited by just these two orbits. The 
orbits close half-way on (3q, 3p) ,  on the other plane, and there are two bands of orbits. 

Drawing the polar construction for other odd-odd CE cases, it can be seen that 
there are only two bands of orbits as seen above. 

Now we come to discuss the rationale behind this classification of orbits. Due to 
the polar construction, each subsegment is an arc of angle 2a/3p. Translating the 
formation of periodic orbit by the polar construction into an equation, we trivially get 
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N(2?r /3p)q  = 27rM ( 1 )  

where N denotes the number of subsegments and M denotes the number of rotations 
by 2% Henceforth, we will call N the ‘crossing index’ and M the ‘rotation number’. 
Equation ( 1 )  is simply 

N q = 3 M p  ( l a )  

where M, N, q, p are positive integers. Since this is a CE case, q is not a multiple of 
three, i.e. q =31, If 8. Thus, the only way in which equation ( l a )  can be satisfied is if 
q = M and 3p = N. Note that M and N will be odd as both q and p are odd. The 
crossing-index on one circle is 3 p  implying that the total crossing-index is 6 p  after 
which the orbit closes. In all, there are 12p subsegments and hence there are exactly 
two bands of periodic orbits. 

In general, the crossing-index is given by [15] 

and the rotation number is given by 

where [a, b] denotes the lowest common multiple of a and b. Trivially, for the CE 
case, N = 3 p  and M = q ;  for the cc case, N = p  and M = 413. 

Case 2: odd-odd cc. Firstly, all the rational directions pointing towards an infinite 
number of avenues correspond to the bands of periodic orbits. Points (9, p )  correspond- 
ing to avenues are of the form ( 3 ( 2 k -  l ) ,  l) ,  k f  Z. For each direction there are two 
bands corresponding to positive and negative gradients. 

We go over to a representative of a general case, namely (4. p )  = ( 3 , s ) .  The polar 
construction is depicted in figure 7. There are three strings of points corresponding to 
three bands of periodic orbits. Including the opposite gradients, there are four distinct 
bands in all. The string starting with point 1 and ending with point 11 closes after six 
reflections. The case for 1B-11B orbit is the same. The opposite gradient counterpart 
of 1-11  (1B-l1B) is equivalent to itself, starting from the outer circle (at 6 (6B)). So 
these strings give us two bands of periodic orbits. Care must be taken for the periodic 
orbit starting with the point 1A. The orbit closes at 6A as this is the subsegment 
corresponding to 1A on the inner circle and the gradient matches. The orbit 1A-6A 
closes after four reflections and occurs in a band. Taking the opposite gradient, we 
get two bands of periodic orbits here. 
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For other odd-odd cc cases, we obtain the same results as in the above-mentioned 
case. Let us now see the reason for the occurrence of four bands of periodic orbits in 
this case. 

From equations ( 2 )  and (31, M = q/3  and N =p. For each orbit, the crossing-index 
will be 2p accounting for the other circle also. In total, there are 12p segments and it 
clearly follows that there must be six bands of periodic orbits. Subtracting the two 
equivalent bands, we are left with four bands. 

Case 3: odd-even CE. Consider (q, p) = (1,2).  The polar construction is drawn in figure 
8. There is a bifurcation in the band of trajectories starting with point 1, and further 
continuing with two bands, primed and unprimed, to eventually close at 13' and 13 
respectively. This feature, which can be succinctly described as bifurcation of the vector 
fields at vertices and continuation of trajectories in the form of bands (a signature of 
zero Lyapunov exponent) is typical of pseudointegrable systems. The points 1 and 6' 
are, indeed, identical. Orbits emanating from 1 and 6' (1A and 6A') will be the same. 
Consequently, on allowing the opposite gradients, we get just two bands of periodic 
orbits. 

Figure 8. Polar construction for the odd-even CE 
case. The typical case for which the diagram is drawn 

Figure 9. Polar construction for the odd-even cc 
case. The typical case for which the diagram is drawn 

is (q .p)=( l .2 ) .  is ( % ~ ) = ( 3 . 2 ) .  

All other examples of this class give rise to the same number of bands and the 
orbit types are also similar. Of course, the lengths and other details will be different. 

As the arguments for justification follow the same lines, we will not repeat them 
for this and further cases. 

Case 4: odd-even cc. For this case, consider (q, p)  = (3, 2) ,  the polar construction for 
which is drawn in figure 9. Due to bifurcations, we have drawn double the marks, 
thus, making explicit that we have to fill 24p points in all. As can be seen from the 
diagram, there are four bands of periodic orbits: an orbit corresponding to the string 
1 2 . .  .9; another orbit corresponding to the string 1A 2 A . .  .9A; and a positive-negative 
gradient pair 1'2'.  . , 5 '  (plus the opposite gradient). It is interesting to see that 
bifurcations of these vector fields take place at  all possible places, namely Z,, 2, and 
5. 
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Considering other odd-even cases, one can easily see that the same conclusions 
about the number of bands, etc, will hold, leaving apart the finer details. 

Case 5: even-odd CE. Consider (q ,  p )  = (2, I) ,  the polar construction for which is shown 
in figure 10. There are two bands of periodic orbits. In fact, the periodic orbit formed 
with opening point as the negative-gradient-equivalent of the point 1 is identical to 
the orbit 1A 2A..  .7A, starting from 2A. Thence, the string 1 2 . .  . 7  and its negative 
gr.dl.mt co??nterpi?r! ZT' thP t'UO bands In :'.is ewe. 

Case 6: even-odd cc. A general case can be studied through the example of (4, p) = 
(6,5), the polar construction being depicted in figure 11. Although the diagram is 

Figore IO. Polar construction for the even-odd CE 

case. The typical case for which the diagram is drawn 
is (q.p)=(2,1).  

Figure 11. Polar construction for the even-add cc 
case. The typical case for which the diagram is drawn 
is (4. P) = ( 6 , s ) .  

Table 1. Summary of the results obtained for the periodic orbits in section 2. In  column 
3, 1-1 stands for one positive and one negative gradient periodic orbit. In column 4, 
(4/2,p/2) indicates the fact that the orbit closes a half-way of (q,p). The symbol I,= 
(q2+3p*)'" and L is the sidelength of the rhombus. 

No. of Closing Length of Area of 
Type Classes families point the orbits the band 

centre-centre 
add-add 

odd-even 

even-odd 

Centre-edge 
odd-odd 
add-even 
even - o d d 

1-1 
2 
1-1 
2 
1-1 
2 

1-1 
1-1 
1-1 
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getting rather complicated, in the same manner as discussed earlier, it can be concluded 
that there are four bands of periodic orbits. The general validity of this conclusion 
can be verified without undue hardship. 

The results of this section, along with the lengths of the periodic orbits and the 
phase space areas of the bands in which they occur, are summarized in table 1 .  

3. Distribution of periodic orbits 

The results of section 2 clearly show that there are a countable number of families of 
periodic orbits. By family of periodic orbit we mean an isolated trajectory closing after 
an odd number of reflections, or a band of trajectories closing after an even number 
of reflections. We have also seen that the periodic trajectories only occur in bands for 
the (n!3)-rhombus billiard due to its eqoiva!ence with the harrier hl!!iard discussed 
in the last section. The number of families of periodic orbits less then x is finite for 
any x [91. We call this number by the counting function, F ( x ) .  In this section, we 
study F ( x )  in the light of the results obtained in section 2. 

For a polygon, it is conjectured [16] that 

F ( x )  = C X " + O ( X " + ' ) .  (4) 

For almost-integrable polygons (the (~r/3)-rhombus being one such case), n = 2. First, 
we paraphrase a theorem due to Gutkin [ 9 ] .  

Theorem. Let P be an almost-integrable polygon and let A be the corresponding 
integrable one. Let g be the genus of the surface R corresponding to P. Denote by 
IPI, /AI the areas of P and A respectively. Then there is a constant c, depending on 
P, 1s cI s lPl/lAl, such that 

F(x)=c,.rrgx2/1Pl+O(x).  ( 5 )  

We now present number-theoretic arguments to obtain F ( x )  for our case. Sub- 
sequently, we shall discuss and compare our results with the above-mentioned results 
by Katok and Gutkin. The length of periodic orbits in the given family corresponding 
to the lattice point (4 ,  p ) ,  where q, p are coprime, is given by I = ~ ~ L ( q ~ + 3 p ~ ) " ~  where 
c2 depends on the family of periodic orbits as seen in table I .  If 1 c x for a given family 
of points ( q , p )  the contribution from this family of ( q , p )  should be counted in F ( x ) .  
We can draw a circle of radius I, ( = qoL), then, all points (q ,  p )  having family of 
periodic orbit with length c2/, s x (or I ,  6 x / c J  should be considered for the calculation 
of F ( x ) .  Referring to figure 12, the area of a quarter circle is d: /4  and the area of 
the square OABC is 1:. We shall denote the integer (fractional) part of a number by 
[. , . ]  ({..,I), The number of lattice points in OABC is 

N = ( q o +  I)[(qo+ l ) /&I=(qo+ l )2 /Js - (qo+1) [ (qo+  I)/&]. 

On average, [ ( q o + l ) / & ]  is f (obviously); hence 

N -  qi/&+(2q,+ l ) /&-(qo+ 1 ) / 2 .  

Therefore, the number of lattice points in a quarter circle is 

N. = N (  d:/4)//: = 7rN/4. 
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eo Figure 12. See text. 

Since the probability that two randomly chosen numbers are coprime is 6 / n 2  [IS], 
the number of coprime lattice points is 

N, = (6/ n')( n N / 4 )  - (&/7/2nL) + A&/4n (since qo= / , / L ,  L =  sidelength) 

where A = ( 4 - & ) / , /  L+2-&. 
For reasons discussed in the previous sections, we are concerned with finding the 

number of points in a n/3-sector, the area of which is two-thirds that of a quarter 
circle. Hence, for a (n/3)-sector 

N'( I , )  - /:/&nL' + A/2&n. 

Taking only the dominant contribution (O(/;)), with the help of table 1, we can write 
for the number of periodic orbits whose length is G X  

F ( x )  - ~ ~ ~ O O ~ ~ ~ O ' , c c ~ ~ ~ ~  + ~ o ~ c ~ ~ o o c c ~ ~ ~  + ~ o e c ~ ~ o e c c ~ x ~  

+ PoeccNmcdx/2) + P e o c J ' d x )  + PeoccNeocc(x/2) + PooA'ooce(2~/3) 

+ PoeceNoe&/3) + PeoceNao&/3)) 

where Po,,, is the probability that given coprime lattice point is of odd-odd, centre- 
centre type, and so on, Noocc(/)  is total number of odd-odd, centre-centre type coprime 
lattice points contained in the sector. Out of four points only one is odd-odd (or 
even-odd or odd-even), also two out of three points are of centre-edge type and one 
is of centre-centre type. Therefore we have 

poocc = Po.,, = p.,,, = ; 
Po,,, = Po... = peace =d. 

( 6 )  

(7) 

Thus we can write 

F ( x )  = 2((4+ 1 + 1 +i+ 1 +$)(x2/9&nL2)+ ( . $ + $ + $ ) ( 2 x 2 / 9 J " j d 2 ) )  

= [ 5 3 / ( 2 7 & r L * ) ] X 2  

= 0.082 24x2 
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or 

= 0.049 7 3 3 ( 2 r / l P I ) x z .  (9 )  

Of course, apart from the dominant term that is quadratic in x, there will be terms 
of O(x) and O(1). It is, however, important to note here that term of O(x) is not 
related to the orbits periodic after an odd number of reflections (hence, isolated). 
These terms only present a more exact expression for F ( x )  arising from the above 
arguments. Their origin is in the points contributing to F ( x )  lying on the boundary 
of the sector. On the same lines as above, terms of O(x) and O(1) are found to be 
(26/81 r)(4&- 3)(x/L) and ( l 2 / 2 7 r ) ( 2 & -  3) respectively. 

One can see from figure 13 that the number-theoretic estimate is an asymptote to 
the numerically obtained result (based on section 2). Even for x < lo2, one sees a 
quadratic law. The fast asymptotic convergence to the quadratic law is mainly because 
^F Pa^. ^^ . ,__&-A: -  ^^^.,^_ "~- - -  -'- .L- ---- :__ ___L^L:,:.._ I I C ,  2, ..-- 1 
U1 la>, aJy l l lyrur lr  LulL"=E&GuL.G U1 LIIC LupL"L1c p'u"'lU1L1Ly I d W  (0, ?i , uscu d"U"C-. 

Thus, the asymptotic law of proliferation of periodic orbits in the (.rr/3)-rhombus 
billiard is, indeed, exactly quadratic. This establishes and extends Katok's conjecture 
stated earlier. However, our result does not agree with the prefactor in the Gutkin 
theorem. The constant c, (in the theorem) as seen by our analysis is 53/1081r2 (roughly 
0.05). But, c, is greater than or equal to 1 in the statement of the theorem. This 
disagreement is mainly due to the following reason. In considering the number of 
points on the lattice formed by the fundamental regions of the corresponding integrable 
system, the fact that any pair of numbers (q ' , p ' )  (a multiple of some coprime (4, p ) )  
cannot be distinguished from ( q , p )  was not taken into account. Thus, once the 
contribution to F ( x )  is considered for a coprime pair ( 4 . p ) .  no more (although there 
are countably infinite) multiples thereof need consideration. Further, since only a 
(~ /3) -sec tor  is required for the complete calculation, c, will reduce by another factor 
of 1/6. Finally, notice that there is a basic difference between the lattice generated by 

' . t  ,,( , , I 
QO 
00 1.0 2.0 3.0 4.0 t 3 

log x 
Figure 13. A lag-log plot o f  the counting function, F ( x ) ,  versus the length of the periodic 
orbit, x. The broken C U N ~  represents the estimate derived in section 3 (0.08224x'f 
0.191 63x+0.065656) and is compared with the full E U N ~  obtained from the results of 
Section 2. It can be seen that an exact quadratic law holds after x approximately exceeds 
40 units. Below this, the dependence is a combination of quadratic and linear behaviours. 
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fundamental regions of the (a/3)-rhombus billiard and its corresponding integrable 
system (equilateral triangle) and that is in the incomplete tessellation of the plane 
resulting in uncovered regions manifested in zero-width, finite-length bamers. It is this 
structure that enables us to complete the classification via integer-labelling. Of course, 
it matters whether ( q , p )  is (odd, odd), (odd, even) or (even, odd) as can be verified 
from table 1. A look at the analysis presented earlier in this section reveals that in this 
case (at least), the prefactor must reduce further by another order. Hence, the bounds 
on c, given by Gutkin are not correct (although the quadratic part of the law is correct) 
inasmuch as, at least the lower bound has to reduce to 0(10-2) (in agreement with 
our calculation, 53/ 108a’). 

S R Jain and H D Parab 

4. Discussion 

Before discussing our results, let us summarize them. The (a/3)-rhombus billiard was 
mapped onto an equivalent barrier billiard on two two-dimensional planes. Due to 
periodic occurrence of the barriers, an appropriate integer labelling was facilitated 
which, in turn, allowed us to present a simple criterion for the enumeration of periodic 
orbits. For classification of orbits, we exploited the translational symmetry thereby 
allowing us to develop a ‘polar construction’ of the barrier-gap geometry. Owing to 
the compactness of the construction, we were able to classify the periodic orbits. 
Indeed, the polar construction provides a code for the periodic orbits of this system. 
These results were used to obtain the family counting function. We also developed a 
probabilistic number theoretic argument to explain the family counting function, 
subsequently discussing our results in the light of some of the earlier results. More 
precisely, it was shown that the periodic orbits proliferate in accordance with a quadratic 
power law as compared to the exponential law for the chaotic systems. 

Our analysis can be easily generalized to enumerate orbits for any other bamer 
billiard with a rational barrier-to-gap ratio. For other oblique angles also, the analysis 
is possible to extend itself by taking care of the phases in an appropriate manner. 

Although the (a/3)-rhombus billiard is an example of almost integrable billiards 
(in general, pseudointegrable systems), it must be emphasized that it is a non-integrable 
system. A study of quantal-classical correspondence, very important for non-integrable 
systems, necessitates semiclassical results. Indeed, the only semiclassical theory valid 
for all systems is the periodic orbit theory. The periodic orbit theory developed by 
Gutzwiller has been shown to yield very good results when the system is completely 
chaotic and integrable. The systems on which the theory has been tested are the ones 
with all the periodic orbits unstable and isolated. Here, we have a system wherein all 
the periodic orbits occur in bands (hence, the Morse indices are (number of reflections 
before closure) times a). Also, very recent results show that all the non-periodic orbits 
are very complicated fractal trajectories [18]. As mentioned in the introduction, it 
follows from our work that to understand the semiclassical quantization of this system 
(typical of this class of systems), one needs to develop a periodic orbit theory with 
the orbit-scenario discussed above. 

There are two well known difficulties in the periodic orbit theory: 
(i) it is extremely difficult to enumerate and classify the periodic orbits, determine 

(ii) the periodic orbit sum is, at best, conditionally convergent; generally, it is 
the lengths and stability parameters; and 

divergent and it has not been possible to resum it in a meaningful manner [17]. 
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In this paper, we have been successful in overcoming the first hurdle. As far as the 
second one is concerned, in the light of the recent results [18], work i s  in progress [19]. 
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